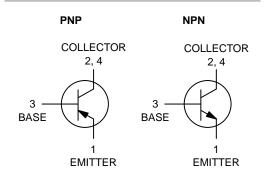
Complementary Plastic Silicon Power Transistors

The MJE170/180 series is designed for low power audio amplifier and low current, high speed switching applications.

Features


- High DC Current Gain
- High Current-Gain Bandwidth Product
- Annular Construction for Low Leakages
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Base Voltage MJE170G, MJE180G MJE171G, MJE181G MJE172G, MJE182G	V _{CB}	60 80 100	Vdc
Collector–Emitter Voltage MJE170G, MJE180G MJE171G, MJE181G MJE172G, MJE182G	V _{CEO}	40 60 80	Vdc
Emitter-Base Voltage	V _{EB}	7.0	Vdc
Collector Current – Continuous	Ι _C	3.0	Adc
Collector Current – Peak	I _{CM}	6.0	Adc
Base Current	I _B	1.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	12.5 0.012	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.5 0.1	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD – Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3 AMPERES POWER TRANSISTORS COMPLEMENTARY SILICON 40 – 60 – 80 VOLTS 12.5 WATTS

MARKING DIAGRAM

Y	= Year
WW	= Work Week
JE1xx	= Specific Device Code
	x = 70, 71, 72, 80, 81, or 82
G	= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	10	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	83.4	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				

OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$ MJE170G, MJE180G MJE171G, MJE181G MJE172G, MJE182G	V _{CEO(sus)}	40 60 80		Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$	I _{CBO}		_	
MJE170G, MJE180G (V _{CB} = 80 Vdc, I _E = 0) MJE171G, MJE181G		-	0.1 0.1	μAdc
$(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ MJE172G, MJE182G $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$ MJE170G, MJE180G		_	0.1	mAdc
$(V_{CB} = 80 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$ MJE171G, MJE181G $(V_{CB} = 100 \text{ Vdc}, I_F = 0, T_C = 150^{\circ}\text{C})$		-	0.1	
MJE172G, MJE182G		-	0.1	
Emitter Cutoff Current ($V_{BE} = 7.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	0.1	μAdc

ON CHARACTERISTICS

$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 100 \text{ mAdc}, \text{V}_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, \text{V}_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 1.5 \text{ Adc}, \text{V}_{CE} = 1.0 \text{ Vdc}) \end{array} $	h _{FE}	50 30 12	250 _ _	-
Collector-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$) ($I_C = 1.5 \text{ Adc}, I_B = 150 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}, I_B = 600 \text{ mAdc}$)	V _{CE(sat)}	- - -	0.3 0.9 1.7	Vdc
Base-Emitter Saturation Voltage ($I_C = 1.5 \text{ Adc}, I_B = 150 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}, I_B = 600 \text{ mAdc}$)	V _{BE(sat)}		1.5 2.0	Vdc
Base–Emitter On Voltage (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	_	1.2	Vdc

DYNAMIC CHARACTERISTICS

Current–Gain – Bandwidth Product (Note 1) (I_c = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)	f _T	50	-	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$ MJE171G/MJE172G MJE181G/MJE182G	C _{ob}		60 40	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. $f_T = |h_{fe}| \cdot f_{test}$.

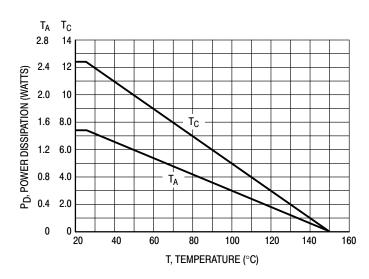


Figure 1. Power Derating

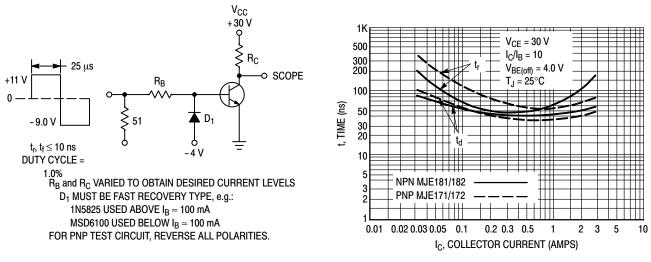


Figure 2. Switching Time Test Circuit

Figure 3. Turn–On Time

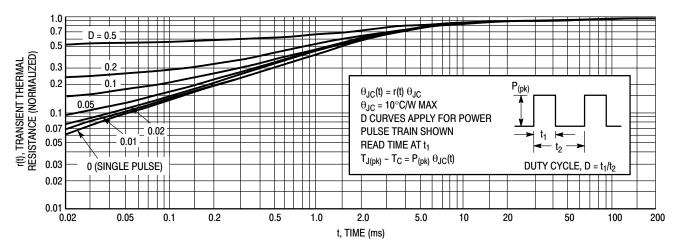
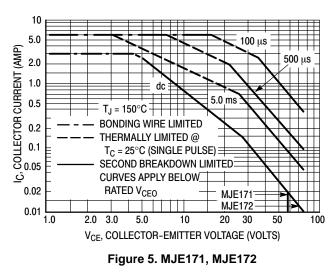
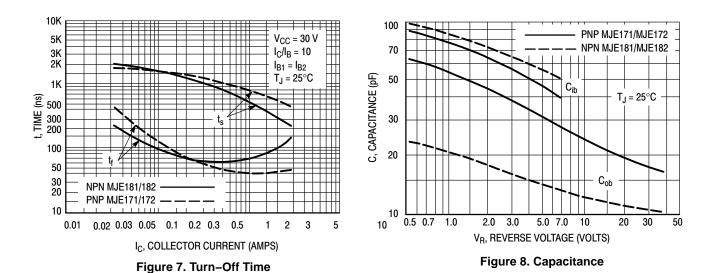



Figure 4. Thermal Response

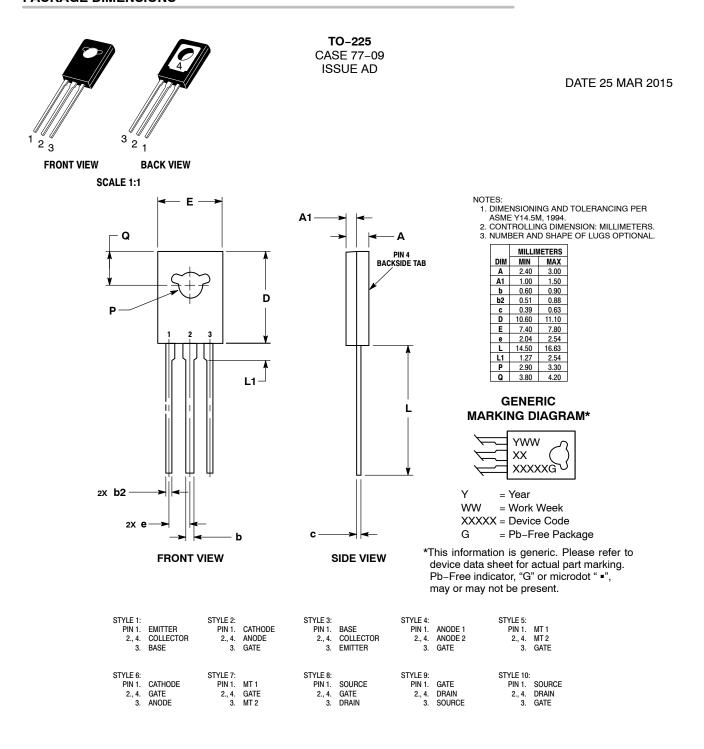


10 5.0 100 µs **500** μs 5.0 ms do T_J = 150°C BONDING WIRE LIMITED THERMALLY LIMITED @ T_C = 25°C (SINGLE PULSE) SECOND BREAKDOWN LIMITED <u>ن</u> CURVES APPLY BELOW MJE181 0.02 RATED VCEO MJE182 0.01 1.0 3.0 5.0 7.0 10 20 30 50 70 100 2.0 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 6. MJE181, MJE182

There are two limitations on the power handling ability of a transistor – average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 5 and 6 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperature, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.



ACTIVE-REGION SAFE OPERATING AREA

ORDERING INFORMATION

Device	Package	Shipping
MJE170G	TO-225 (Pb-Free)	500 Units / Box
MJE171G	TO-225 (Pb-Free)	500 Units / Box
MJE172G	TO-225 (Pb-Free)	500 Units / Box
MJE180G	TO-225 (Pb-Free)	500 Units / Box
MJE181G	TO-225 (Pb-Free)	500 Units / Box
MJE182G	TO-225 (Pb-Free)	500 Units / Box

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
TO-225		PAGE 1 OF 1	
		98ASB42049B Printed versions are uncontrolled except when stamped "CONTROLLED (